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### Bio-insect flapping wing micro aerial vehicle (FWMAV) is a kind of centimeter-scale air-flying robot which imitates the flapping-wing motion pattern of flying insects in order to realize flying ability and agile maneuverability similar to flapping-winged flying insects. Because of its future broad application prospects in the field of military and civilian, at present, the development of bio-insect FWMAV has become a hot research topic of some important scientific research institutions and units at home and abroad.

## The introduction of the main content:

The book is divided into nine chapters. Firstly, the research background and engineering significance, the research situation of the dipteran insect wingbeat model and the domestic and international research status of the insect-inspired flapping wing micro air vehicle (FWMAV) are elaborated, and the important problems faced by engineering design are extracted. Then the modeling theory and numerical method of computational fluid dynamics of insect flapping wing flight are summarized, and the research status of the aeroelastic noise of flapping wing flight is introduced. The sounding mechanism and noise reduction mechanism of different flapping wing species are discussed. An extended quasi-steady aerodynamic and inertial force and moment model was established to solve the problem of wingbeat dynamics and optimal aerodynamic parameters for flapping wing hovering flight with minimum energy consumption. Then, based on the quasi-steady aerodynamic model and the lumped parameterized linear model, the conceptual design framework of the flapping wing hovering flight is established. From the perspective of the development of engineering prototypes, the engineering and technical routes such as the design, manufacture and testing of the insect-inspired FWMAV are systematically expounded. Finally, the main contents of this book are summarized and the future research directions are prospected.
The book is structured in a clear-cut manner, focusing on forward-looking and systematic, highlighting the combination of theoretical issues and engineering applications. It can be used as a senior undergraduate and graduate textbook for micro air vehicle design, aerospace and micro-electromechanical systems, etc., as well as a reference book for aviation engineers and researchers in related fields.
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  # C_LD_with_alpha

*Aerodynamic coefficients of lift and drag vs. angle of attack (alpha) for flapping wing.*
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## 1. Aerodynamic coefficients of lift vs. angle of attack (alpha)
![lift_coefficients_with_alpha](https://github.com/xijunke/C_LD_with_alpha/blob/master/pic_png/lift_coefficients_with_alpha.png)

## 2. Aerodynamic coefficients of drag vs. angle of attack (alpha)
![drag_coefficients_with_alpha](https://github.com/xijunke/C_LD_with_alpha/blob/master/pic_png/drag_coefficients_with_alpha.png)



            

          

      

      

    

  

    
      
          
            
  # The description of paramorphological and parameterization for the right wing of the fruit fly.

The paramorphological and parameterization description of the right wing of the fruit fly and the leading and trailing edges of the outline are drawn as following figure:

![Wing_Shape_fruitfly](https://github.com/xijunke/Wing_Shape_fruitfly/blob/master/pic_png/Wing_Shape_fruitfly.png)
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## Here, video_S1.MP4 and video_S2.MP4 are included to be hoped to much more vivid for the FWMAV community’s researcher.

1)-The temporal and spacial variable process of chordwise position of center of pressure (CoP) changing with local angle of attack (AoA) for translational and rotational circulation aerodynamic forces acting normal to each spanwise strip element, which are assumed that they are distributed and always shift between the leading edge and trailing edge of the wing with the variation of AoA, which is played as “video_S1.MP4”.

![The temporal and spacial variable process of chordwise position of center of pressure (CoP)](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/videos/video_S1.gif)

2)-The dynamic process of instantaneous forces for a complete stroke，which is played as “video_S2.MP4”.

![The dynamic process of instantaneous forces for a complete stroke](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/videos/video_S2.gif)

## Abstract and Keywords

Abstract: The production of wingbeat motion of flapping wing hovering flight are determined by the actuating, aerodynamic and inertia forces/moments, which influence the dynamic unsteadiness and controllability of flapping wing flying. This paper presents the feasible solution for cracking the problem of two degrees of freedom (two DoFs, namely, flapping and pitch motion, respectively) highly coupled nonlinear hovering wingbeat dynamics. Firstly, two DoFs nonlinear hovering wingbeat dynamic ordinary differential equations (ODEs) are derived on basis of the extended quasi-steady aerodynamic and inertial forces/moments model. Then, we perform their numerical solution by using tractable ODEs numerical algorithm, boundary value problem-solving format, and least square method. The numerical results have a good consistency with those measured by Dr. Muijres. Moreover, the adjustable rule of phase offset of wing pitch angle relative to the flapping angle is quantificationally studied by introducing frequency ratio between pitch frequency and flapping frequency. We find that the phase offset can be directly regulated by wing pitch hinge stiffness or indirectly modulated by frequency ratio, and the peak value of wing pitch angle monotonously decreases with the increase of wing pitch hinge stiffness, opposite to the angle of attack (AoA). This adjustable rule paves a useful way for the bio-inspired flapping wing micro aerial vehicle (FWMAV) featuring passive or semi-passive pitch flexible hinge to maintain high variable AoA.
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## Highlights：

The numerical solution for flapping wing hovering wingbeat dynamics

Xijun Ke, Weiping Zhang, Jinhao Shi, Weidong Chen

(1) Firstly, the hovering wingbeat dynamic ODEs are set up on basis of the extended quasi-steady aerodynamic and inertial forces/moments model [10, 11]. The model assumes that the chordwise center of pressure (CoP) for translational and rotational circulation aerodynamic forces are similarly distributed and always shift between the leading edge and trailing edge of the wing with the variation of AoA instead of fixed at the midpoint of each infinitesimal chordwise strip element of the wing[12](See video S1 and video 2 in supplementary material).

(2) Secondly, we cracked the problem of highly coupled two DoFs nonlinear hovering wingbeat dynamics by leveraging tractable numerical algorithm. The simulated results have a good consistency with the experimental results provided by Dr. Muijres [1]. Meanwhile, the optimal actuating torque parameters, wing flapping and pitch hinge stiffness are firstly obtained.

(3) Thirdly, we performed the quantitative analysis study of wing pitch dynamic. The adjustable design rule of wing pitch motion for bioinspired FWMAV featuring passive or semi-passive pitch flexible hinge is proposed for the bionic design to actively maintain high variable AoA.

## All the Figures included in the main text has been listed as following:

![Fig1_Left_wing_body_model](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig1_Left_wing_body_model_s1_4_12_2.png)

![Fig1_Right_wing_body_model](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig1_Right_wing_body_model_s1_4_13_2.png)

*Figure 1: Coordinate systems and definition of right-wing Euler angles relative to the stroke plane in right wing root frame (x_{rr}y_{rr}z_{rr}) [9, 10].*

![The numerical solving procedure](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig2.png)

*Figure 2: The numerical solving procedure of two coupled wingbeat dynamic nonlinear ODEs (WGP is the abbreviation of wing geometry parameters).*

![3D sandwich geometry model of the compliant hinge](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig3.png)

*Figure 3: 3D sandwich geometry model of the compliant hinge(a rigid layer: gray;
exible layer: yellow).*

![The comparison of the simulated results acquired by the decoupled strategy with the experimental ones](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig4.png)

*Figure 4: The comparison of the simulated results with the experimental ones: (a) Given the measured
apping angle as an input (black solid line), the simulated pitch angle (blue
dot-dash line) and the measured pitch angle (red solid line); (b) The phase diagram for dpsi_{sim}(t) and  psi_{sim}(t). (c) Given the measured pitch angle as one of the inputs (black solid
line), the simulated
apping angle (blue dot-dash line) and the measured
apping angle (red solid line). (d) The phase diagram for dphi_{sim}(t) and phi_{sim}(t).*

![The comparison of simulated results acquired by the coupled strategy with experimental ones](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig5.png)

*Figure 5: The comparison of simulated results acquired by the coupled strategy with experimental ones: (a) the simulated
apping and pitch angle are shown in red and blue solid lines, respectively, while those measured are plotted in red and blue dot-dash lines,respectively; (b) The phase plot for dpsi_{sim}(t) and psi_{sim}(t); (c) The phase plot for dphi_{sim}(t) and phi_{sim}(t).*

![The peak value of simulated pitch angle changes with pitch hinge stiffness](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig6.png)

*Figure 6: (a) The peak value of simulated pitch angle (psi_{sim;peak}) changes with pitch hinge stiffness (k_{pitch;hinge}). (b) The phase offset (delta) varies with frequency ratio (lamda).*

![The phase offset of the simulated pitch angle relative to the experimentally measured pitch angle](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/pic_png/Fig7.png)

*Figure 7: The phase offset of the simulated pitch angle (blue line for the delayed phase,cyan line for the advanced phase and green dot-dash line for the symmetry phase) relative to the experimentally measured pitch angle (red solid line). The abscissa axis is normalized by the
apping period.*
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Abstract: The production of wingbeat motion of flapping wing hovering flight are determined by the actuating, aerodynamic and inertia forces/moments, which influence the dynamic unsteadiness and controllability of flapping wing flying. This paper presents the feasible solution for cracking the problem of two degrees of freedom (two DoFs, namely, flapping and pitch motion, respectively) highly coupled nonlinear hovering wingbeat dynamics. Firstly, two DoFs nonlinear hovering wingbeat dynamic ordinary differential equations (ODEs) are derived on basis of the extended quasi-steady aerodynamic and inertial forces/moments model. Then, we perform their numerical solution by using tractable ODEs numerical algorithm, boundary value problem-solving format, and least square method. The numerical results have a good consistency with those measured by Dr. Muijres. Moreover, the adjustable rule of phase offset of wing pitch angle relative to the flapping angle is quantificationally studied by introducing frequency ratio between pitch frequency and flapping frequency. We find that the phase offset can be directly regulated by wing pitch hinge stiffness or indirectly modulated by frequency ratio, and the peak value of wing pitch angle monotonously decreases with the increase of wing pitch hinge stiffness, opposite to the angle of attack (AoA). This adjustable rule paves a useful way for the bio-inspired flapping wing micro aerial vehicle (FWMAV) featuring passive or semi-passive pitch flexible hinge to maintain high variable AoA.
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  # The numerical solution for flapping wing hovering wingbeat dynamics

The figures of the main text are included here.
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  # The numerical solution for flapping wing hovering wingbeat dynamics

Here, the codes for video_S1.MP4 and video_S2.MP4 are included to be hoped to contribute or promote the FWMAV community’s research.

1)-The temporal and spacial variable process of chordwise position of center of pressure (CoP) changing with local angle of attack (AoA) for translational and rotational circulation aerodynamic forces acting normal to each spanwise strip element, which are assumed that they are distributed and always shift between the leading edge and trailing edge of the wing with the variation of AoA, which is played as “video_S1.MP4”.

2)-The dynamic process of instantaneous forces for a complete stroke，which is played as “video_S2.MP4”.

The numerical solution for flapping wing hovering wingbeat dynamics
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  # The numerical solution for flapping wing hovering wingbeat dynamics

# Supplementary Material for
*The numerical solution for flapping wing hovering wingbeat dynamics*

The extended quasi-steady aerodynamic and inertial forces/moments model for flapping wing hovering flight of FWMAV is the title of “mmc1.pdf”.

Abstract: The production of wingbeat motion of flapping wing hovering flight are determined by the actuating, aerodynamic and inertia forces/moments, which influence the dynamic unsteadiness and controllability of flapping wing flying. This paper presents the feasible solution for cracking the problem of two degrees of freedom (two DoFs, namely, flapping and pitch motion, respectively) highly coupled nonlinear hovering wingbeat dynamics. Firstly, two DoFs nonlinear hovering wingbeat dynamic ordinary differential equations (ODEs) are derived on basis of the extended quasi-steady aerodynamic and inertial forces/moments model. Then, we perform their numerical solution by using tractable ODEs numerical algorithm, boundary value problem-solving format, and least square method. The numerical results have a good consistency with those measured by Dr. Muijres. Moreover, the adjustable rule of phase offset of wing pitch angle relative to the flapping angle is quantificationally studied by introducing frequency ratio between pitch frequency and flapping frequency. We find that the phase offset can be directly regulated by wing pitch hinge stiffness or indirectly modulated by frequency ratio, and the peak value of wing pitch angle monotonously decreases with the increase of wing pitch hinge stiffness, opposite to the angle of attack (AoA). This adjustable rule paves a useful way for the bio-inspired flapping wing micro aerial vehicle (FWMAV) featuring passive or semi-passive pitch flexible hinge to maintain high variable AoA.
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  # The numerical solution for flapping wing hovering wingbeat dynamics

# Supplementary Videos for

*The numerical solution for flapping wing hovering wingbeat dynamics*

Here, video_S1.MP4 and video_S2.MP4 are included to be hoped to much more vivid for the FWMAV community’s researcher.

1)-The temporal and spacial variable process of chordwise position of center of pressure (CoP) changing with local angle of attack (AoA) for translational and rotational circulation aerodynamic forces acting normal to each spanwise strip element, which are assumed that they are distributed and always shift between the leading edge and trailing edge of the wing with the variation of AoA, which is played as “video_S1.MP4”.

![The temporal and spacial variable process of chordwise position of center of pressure (CoP)](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/videos/video_S1.gif)

2)-The dynamic process of instantaneous forces for a complete stroke，which is played as “video_S2.MP4”.

![The dynamic process of instantaneous forces for a complete stroke](https://github.com/xijunke/FWMAV_HoverWingbeatDynamics/blob/main/videos/video_S2.gif)

Abstract: The production of wingbeat motion of flapping wing hovering flight are determined by the actuating, aerodynamic and inertia forces/moments, which influence the dynamic unsteadiness and controllability of flapping wing flying. This paper presents the feasible solution for cracking the problem of two degrees of freedom (two DoFs, namely, flapping and pitch motion, respectively) highly coupled nonlinear hovering wingbeat dynamics. Firstly, two DoFs nonlinear hovering wingbeat dynamic ordinary differential equations (ODEs) are derived on basis of the extended quasi-steady aerodynamic and inertial forces/moments model. Then, we perform their numerical solution by using tractable ODEs numerical algorithm, boundary value problem-solving format, and least square method. The numerical results have a good consistency with those measured by Dr. Muijres. Moreover, the adjustable rule of phase offset of wing pitch angle relative to the flapping angle is quantificationally studied by introducing frequency ratio between pitch frequency and flapping frequency. We find that the phase offset can be directly regulated by wing pitch hinge stiffness or indirectly modulated by frequency ratio, and the peak value of wing pitch angle monotonously decreases with the increase of wing pitch hinge stiffness, opposite to the angle of attack (AoA). This adjustable rule paves a useful way for the bio-inspired flapping wing micro aerial vehicle (FWMAV) featuring passive or semi-passive pitch flexible hinge to maintain high variable AoA.
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https://github.com/xijunke/Conceptual-design-and-application-of-insect-bioinspired-FWMAV/tree/master/Chapter5



https://github.com/xijunke/Conceptual-design-and-application-of-insect-bioinspired-FWMAV/tree/master/Chapter6



https://github.com/xijunke/Conceptual-design-and-application-of-insect-bioinspired-FWMAV/tree/master/Chapter7

# Bio-inspired Robot Insect
<div align=center>
<img src=”https://github.com/xijunke/Conceptual-design-and-application-of-insect-bioinspired-FWMAV/blob/master/pic_of_book/robot_insect.png” width=”450” height=”300”/>
</div>
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  # Comparative analysis of various aerodynamic lift and drag coefficients models

1. Comparative analysis of various aerodynamic coefficients of lift vs. angle of attack (alpha)
![Comparative analysis of various aerodynamic lift and drag models](https://github.com/xijunke/C_LD_C_perimeter_to_Edge_correction/blob/master/pic/Comparative%20analysis%20of%20various%20aerodynamic%20lift%20and%20drag%20models.png)

2. Comparative analysis of various aerodynamic coefficients of drag vs. angle of attack (alpha)
![Comparative analysis of various aerodynamic drag models](https://github.com/xijunke/C_LD_C_perimeter_to_Edge_correction/blob/master/pic/Comparative%20analysis%20of%20various%20aerodynamic%20drag%20models.png)

3. Comparative analysis of various aerodynamic lift and drag coefficients models changing with the angle of attack (alpha)for the flapping wing hovering.
![Comparative analysis of various aerodynamic lift models](https://github.com/xijunke/C_LD_C_perimeter_to_Edge_correction/blob/master/pic/Comparative%20analysis%20of%20various%20aerodynamic%20lift%20models.png)



            

          

      

      

    

  

    
      
          
            
  # Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy

## Here, these codes are written for the following papers:

[1] Xijun Ke, Weiping Zhang, Xuefei Cai, and Wenyuan Chen,”*Wing geometry and kinematic parameter optimization of flapping wing hovering flight for minimum energy*”, ***Aerospace Science and Technology*, 2017(64), 192-203. https://doi.org/10.1016/j.ast.2017.01.019. (IF: 4.499)**

[2] Xijun Ke and Weiping Zhang,”*Wing geometry and kinematic parameter optimization of flapping wing hovering flight*”, ***Applied Sciences*, 2016, 6,390,1-35. https://doi.org/10.3390/app6120390. (IF: 2.474)**



## The extended quasi-steady aerodynamic and inertial forces/moments model are derived in the following paper:

### The numerical solution for flapping wing hovering wingbeat dynamics

by Xijun Ke, Weiping Zhang, Jinhao Shi and Weidong Chen, Aerospace Science and Technology, 110(2021), 106474, (IF: 4.499).

https://doi.org/10.1016/j.ast.2020.106474

https://www.sciencedirect.com/science/article/abs/pii/S1270963820311561

Xijun Ke, Weiping Zhang, Jinhao Shi and Weidong Chen,”*The numerical solution for flapping wing hovering wingbeat dynamics*”, ***Aerospace Science and Technology*, 110(2021), 106474. https://doi.org/10.1016/j.ast.2020.106474. (IF: 4.499)**

### The relevant codes for this paper has opened in the following URL:

https://github.com/xijunke/FWMAV_HoverWingbeatDynamics



## Abstract and Keywords

Abstract: The optimizations of wing geometry parameters (WGP) and wing kinematic parameters (WKP) to minimize the energy consumption of flapping wing hovering flight are performed by using a revised quasi-steady aerodynamic model and hybrid genetic algorithm (hybrid-GA). The parametrization method of dynamically scaled wing with the non-dimensional conformal feature of fruit fly??s wing is firstly developed for the optimization involving the WGP. And the objective function of optimization is formed on basis of the power density model with the additional penalty items of lift-to-weight ratio, boundary constraints, aspect ratio (AR) and Reynolds number (Re). The obtained optimal WGP and WKP are separately substituted into the power density model to estimate the instantaneous forces and the power output again. The lower power density, flapping frequency and larger WGP for the combined optimal WGP and WKP are obtained in comparison with the estimated values for hovering fruit fly. These results might arise from the effect of strong coupling relationship between WGP and WKP via AR and Re on minimization of power density under the condition of lift balancing weight. Moreover, the optimal flapping angle manifests the harmonic profile, and the optimal pitch angle possesses the round trapezoidal profile with certain faster time scale of pitch reversal. The conceptual model framework of combined optimization provides a useful way to design fundamental parameters of biomimic flapping wing micro aerial vehicle.

Keywords: Flapping wing micro aerial vehicle, combined optimization, and nonlinear couple.



## Highlights:

Wing geometry and kinematic parameter optimization of flapping wing hovering flight for minimum energy

Xijun Ke, Weiping Zhang, Xuefei Cai, and Wenyuan Chen

(1) The combined optimizations of wing geometry and kinematic parameters are firstly performed to minimize the energy of flapping wing hovering flight.

(2) The parametrization description of dynamically scaled wing with non-dimensional conformal feature is firstly developed by including the parametrization of wing leading-edge profiles, the definition of pitch axis and mass properties.

(3) The revised quasi-steady aerodynamic model is developed on basis of previous aerodynamic model by additionally introducing the rotational circulation moments and aerodynamic damping moment along the chordwise axis of wing planform.



## All the Figures included in the main text has been listed as following:

![Fig1_Left_wing_body_model](https://github.com/xijunke/FWMAV_HoverEnergyConsumptionOptimizations_WGP_WKP/blob/main/pic_png/Fig1_Left_wing_body_model_s1_4_12_2.png)

![Fig1_Right_wing_body_model](https://github.com/xijunke/FWMAV_HoverEnergyConsumptionOptimizations_WGP_WKP/blob/main/pic_png/Fig1_Right_wing_body_model_s1_4_13_2.png)

*Figure 1: Coordinate systems and definition of right-wing Euler angles relative to the stroke plane in right wing root frame (x_{rr}y_{rr}z_{rr}) [9, 10].*



            

          

      

      

    

  

    
      
          
            
  # Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy

The figures of the main text are included here.

Abstract: The optimizations of wing geometry parameters (WGP) and wing kinematic parameters (WKP) to minimize the energy consumption of flapping wing hovering flight are performed by using a revised quasi-steady aerodynamic model and hybrid genetic algorithm (hybrid-GA). The parametrization method of dynamically scaled wing with the non-dimensional conformal feature of fruit fly’s wing is firstly developed for the optimization involving the WGP. And the objective function of optimization is formed on basis of the power density model with the additional penalty items of lift-to-weight ratio, boundary constraints, aspect ratio (AR) and Reynolds number (Re). The obtained optimal WGP and WKP are separately substituted into the power density model to estimate the instantaneous forces and the power output again. The lower power density, flapping frequency and larger WGP for the combined optimal WGP and WKP are obtained in comparison with the estimated values for hovering fruit fly. These results might arise from the effect of strong coupling relationship between WGP and WKP via AR and Re on minimization of power density under the condition of lift balancing weight. Moreover, the optimal flapping angle manifests the harmonic profile, and the optimal pitch angle possesses the round trapezoidal profile with certain faster time scale of pitch reversal. The conceptual model framework of combined optimization provides a useful way to design fundamental parameters of biomimic flapping wing micro aerial vehicle.

Keywords: Flapping wing micro aerial vehicle, combined optimization, and nonlinear couple.

## Here, the figures of the main text are included for the following papers:

[1] Xijun Ke, Weiping Zhang, Xuefei Cai, and Wenyuan Chen,Wing geometry and kinematic parameter optimization of flapping wing hovering flight for minimum energy,Aerospace Science and Technology, 2017(64), 192-203
https://doi.org/10.1016/j.ast.2017.01.019

[2] Xijun Ke and Weiping Zhang,Wing geometry and kinematic parameter optimization of flapping wing hovering flight, Applied Sciences, 2016, 6, 390, 1-35.
https://doi.org/10.3390/app6120390
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  # Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy

## Here, these codes are written for the following papers:

[1] Xijun Ke, Weiping Zhang, Xuefei Cai, and Wenyuan Chen,Wing geometry and kinematic parameter optimization of flapping wing hovering flight for minimum energy,Aerospace Science and Technology, 2017(64), 192-203.https://doi.org/10.1016/j.ast.2017.01.019

[2] Xijun Ke and Weiping Zhang,Wing geometry and kinematic parameter optimization of flapping wing hovering flight, Applied Sciences, 2016, 6, 390, 1-35.https://doi.org/10.3390/app6120390

## The extended quasi-steady aerodynamic and inertial forces/moments model are derived in the following paper:

### The numerical solution for flapping wing hovering wingbeat dynamics

by Xijun Ke, Weiping Zhang, Jinhao Shi and Weidong Chen, Aerospace Science and Technology

https://www.sciencedirect.com/science/article/abs/pii/S1270963820311561

https://doi.org/10.1016/j.ast.2020.106474

### The relevant codes for this paper has opened in the following URL:

https://github.com/xijunke/FWMAV_HoverWingbeatDynamics

## Abstract and Keywords

Abstract: The optimizations of wing geometry parameters (WGP) and wing kinematic parameters (WKP) to minimize the energy consumption of flapping wing hovering flight are performed by using a revised quasi-steady aerodynamic model and hybrid genetic algorithm (hybrid-GA). The parametrization method of dynamically scaled wing with the non-dimensional conformal feature of fruit fly??s wing is firstly developed for the optimization involving the WGP. And the objective function of optimization is formed on basis of the power density model with the additional penalty items of lift-to-weight ratio, boundary constraints, aspect ratio (AR) and Reynolds number (Re). The obtained optimal WGP and WKP are separately substituted into the power density model to estimate the instantaneous forces and the power output again. The lower power density, flapping frequency and larger WGP for the combined optimal WGP and WKP are obtained in comparison with the estimated values for hovering fruit fly. These results might arise from the effect of strong coupling relationship between WGP and WKP via AR and Re on minimization of power density under the condition of lift balancing weight. Moreover, the optimal flapping angle manifests the harmonic profile, and the optimal pitch angle possesses the round trapezoidal profile with certain faster time scale of pitch reversal. The conceptual model framework of combined optimization provides a useful way to design fundamental parameters of biomimic flapping wing micro aerial vehicle.

Keywords: Flapping wing micro aerial vehicle, combined optimization, and nonlinear couple.

## Highlights:

Wing geometry and kinematic parameter optimization of flapping wing hovering flight for minimum energy

Xijun Ke, Weiping Zhang, Xuefei Cai, and Wenyuan Chen

(1) The combined optimizations of wing geometry and kinematic parameters are firstly performed to minimize the energy of flapping wing hovering flight.

(2) The parametrization description of dynamically scaled wing with non-dimensional conformal feature is firstly developed by including the parametrization of wing leading-edge profiles, the definition of pitch axis and mass properties.

(3) The revised quasi-steady aerodynamic model is developed on basis of previous aerodynamic model by additionally introducing the rotational circulation moments and aerodynamic damping moment along the chordwise axis of wing planform.

## All the Figures included in the main text has been listed as following:

![Fig1_Left_wing_body_model](https://github.com/xijunke/FWMAV_HoverEnergyConsumptionOptimizations_WGP_WKP/blob/main/pic_png/Fig1_Left_wing_body_model_s1_4_12_2.png)

![Fig1_Right_wing_body_model](https://github.com/xijunke/FWMAV_HoverEnergyConsumptionOptimizations_WGP_WKP/blob/main/pic_png/Fig1_Right_wing_body_model_s1_4_13_2.png)

*Figure 1: Coordinate systems and definition of right-wing Euler angles relative to the stroke plane in right wing root frame (x_{rr}y_{rr}z_{rr}) [9, 10].*



            

          

      

      

    

  

    
      
          
            
  # Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy

The figures of the main text are included here.

Abstract: The optimizations of wing geometry parameters (WGP) and wing kinematic parameters (WKP) to minimize the energy consumption of flapping wing hovering flight are performed by using a revised quasi-steady aerodynamic model and hybrid genetic algorithm (hybrid-GA). The parametrization method of dynamically scaled wing with the non-dimensional conformal feature of fruit fly’s wing is firstly developed for the optimization involving the WGP. And the objective function of optimization is formed on basis of the power density model with the additional penalty items of lift-to-weight ratio, boundary constraints, aspect ratio (AR) and Reynolds number (Re). The obtained optimal WGP and WKP are separately substituted into the power density model to estimate the instantaneous forces and the power output again. The lower power density, flapping frequency and larger WGP for the combined optimal WGP and WKP are obtained in comparison with the estimated values for hovering fruit fly. These results might arise from the effect of strong coupling relationship between WGP and WKP via AR and Re on minimization of power density under the condition of lift balancing weight. Moreover, the optimal flapping angle manifests the harmonic profile, and the optimal pitch angle possesses the round trapezoidal profile with certain faster time scale of pitch reversal. The conceptual model framework of combined optimization provides a useful way to design fundamental parameters of biomimic flapping wing micro aerial vehicle.

Keywords: Flapping wing micro aerial vehicle, combined optimization, and nonlinear couple.

## Here, the figures of the main text are included for the following papers:

[1] Xijun Ke, Weiping Zhang, Xuefei Cai, and Wenyuan Chen,Wing geometry and kinematic parameter optimization of flapping wing hovering flight for minimum energy,Aerospace Science and Technology, 2017(64), 192-203
https://doi.org/10.1016/j.ast.2017.01.019

[2] Xijun Ke and Weiping Zhang,Wing geometry and kinematic parameter optimization of flapping wing hovering flight, Applied Sciences, 2016, 6, 390, 1-35.
https://doi.org/10.3390/app6120390
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## 8.4 Design and manufacturing process of insect bioinspired wings     268

8.4.1 Design of insect bioinspired wings        268

8.4.2 Manufacturing process of insect bioinspired wings 271
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  # PiezoelectricActuator_for_FWMAV

For the piezoelectric-driven Flapping Wing Micro Aerial vehicle (FWMAV), the optimal design and theoretical calculation of the curved double-cantilever piezoelectric actuator and the torsional piezoelectric actuator were carried out, and the calculation code of the optimal size design under the optimal energy density was prepared. And the relevant curve are plotted respectively.

Here, the code is written for the following paper:

#[1] R.J. Wood, E. Steltz, R.S. Fearing,”Optimal energy density piezoelectric bending actuators”,Sensors and Actuators A,119 ,**2005**, 476?C488. doi:10.1016/j.sna.2004.10.024.

![Energy_density_output](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05SAAP/pic/Energy_density_output.png)
Figure 1. Energy density output

![Energy_improvement_geometry_factor_2D_contour](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05SAAP/pic/Energy_improvement_geometry_factor_2D_contour.png)
Figure 2. Energy improvement geometry factor 2D contour

![Energy_improvement_geometry_factor_3D](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05SAAP/pic/Energy_improvement_geometry_factor_3D.png)
Figure 3. Energy improvement geometry factor 3D contour

#[2] Benjamin M. Finio and Robert J. Wood,”Nonlinear Performance Limits for High Energy Density Piezoelectric Bending Actuators”,Proceedings of the 2005 IEEE International Conference on Robotics and Automation,18-22 April 2005.Barcelona, Spain, Spain.DOI: 10.1109/ROBOT.2005.1570673.

![Effective_mass_for_rectangular_cantilever_beam_3D](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05ICRA/pic/Effective_mass_for_rectangular_cantilever_beam_2D_contour.png)
Figure 1. Effective mass for rectangular cantilever beam 3D

![Effective_mass_for_rectangular_cantilever_beam_2D_contour](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05ICRA/pic/Effective_mass_for_rectangular_cantilever_beam_3D.png)
Figure 2. Effective mass for rectangular cantilever beam 2D contour

![Effective_mass_for_tapering_cantilever_beam_2D_contour](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05ICRA/pic/Effective_mass_for_tapering_cantilever_beam_2D_contour.png)
Figure 3. Effective mass for tapering cantilever beam 2D contour

#[3] Benjamin M. Finio and Robert J. Wood,”Optimal energy density piezoelectric twisting actuators”,**2011** IEEE/RSJ International Conference on Intelligent Robots and Systems, September 25-30, 2011. San Francisco, CA, USA.



            

          

      

      

    

  

    
      
          
            
  Here, the code is written for the following paper:

Noah T Jafferis, Michael J Smith and Robert J Wood,”Design and manufacturing rules for
maximizing the performance of polycrystalline piezoelectric bending actuators”,Smart Mater. Struct. 24 (2015) 065023 (18pp).doi:10.1088/0964-1726/24/6/065023.

Noah T. Jafferis, Moritz A. Graule and Robert J. Wood, “Non-linear resonance modeling and system design improvements for underactuated flapping-wing vehicles”, 2016 IEEE International Conference on Robotics and Automation (ICRA) Stockholm, Sweden, May 16-21, 2016.



            

          

      

      

    

  

    
      
          
            
  #Here, the code is written for the following paper:

## Benjamin M. Finio and Robert J. Wood,”Nonlinear Performance Limits for High Energy Density Piezoelectric Bending Actuators”,Proceedings of the 2005 IEEE International Conference on Robotics and Automation,18-22 April 2005.Barcelona, Spain, Spain.DOI: 10.1109/ROBOT.2005.1570673.

![Effective_mass_for_rectangular_cantilever_beam_3D](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05ICRA/pic/Effective_mass_for_rectangular_cantilever_beam_2D_contour.png)
Figure 1. Effective mass for rectangular cantilever beam 3D

![Effective_mass_for_rectangular_cantilever_beam_2D_contour](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05ICRA/pic/Effective_mass_for_rectangular_cantilever_beam_3D.png)
Figure 2. Effective mass for rectangular cantilever beam 2D contour

![Effective_mass_for_tapering_cantilever_beam_2D_contour](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05ICRA/pic/Effective_mass_for_tapering_cantilever_beam_2D_contour.png)
Figure 3. Effective mass for tapering cantilever beam 2D contour

Benjamin M. Finio and Robert J. Wood,”Nonlinear Performance Limits for High Energy Density Piezoelectric Bending Actuators”,Proceedings of the 2005 IEEE International Conference on Robotics and Automation,18-22 April 2005.Barcelona, Spain, Spain.DOI: 10.1109/ROBOT.2005.1570673.



            

          

      

      

    

  

    
      
          
            
  #Here, the code is written for the following paper:

## R.J. Wood, E. Steltz, R.S. Fearing,”Optimal energy density piezoelectric bending actuators”,Sensors and Actuators A,119 ,**2005**, 476?C488. doi:10.1016/j.sna.2004.10.024.

![Energy_density_output](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05SAAP/pic/Energy_density_output.png)
Figure 1. Energy density output

![Energy_improvement_geometry_factor_2D_contour](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05SAAP/pic/Energy_improvement_geometry_factor_2D_contour.png)
Figure 2. Energy improvement geometry factor 2D contour

![Energy_improvement_geometry_factor_3D](https://github.com/xijunke/PiezoelectricActuator_for_FWMAV/blob/master/PiezoelectricActuator_05SAAP/pic/Energy_improvement_geometry_factor_3D.png)
Figure 3. Energy improvement geometry factor 3D contour

R.J. Wood, E. Steltz, R.S. Fearing,”Optimal energy density piezoelectric bending actuators”,Sensors and Actuators A 119 (2005) 476?C488. doi:10.1016/j.sna.2004.10.024



            

          

      

      

    

  

    
      
          
            
  Here, the code is written for the following paper:

Benjamin M. Finio and Robert J. Wood??”Optimal energy density piezoelectric twisting actuators”,2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA.



            

          

      

      

    

  

    
      
          
            
  # Transmission_drive_mechanism_for_FWMAV

For the piezoelectric-driven Flapping Wing Micro Aerial vehicle (FWMAV), the optimal design and theoretical calculation of the planar flexible four-link transmission mechanism were carried out. The gear ratio and the optimal linearity and approximate linearity calculation codes were written respectively, and the relevant curves were drawn.

Here, the code is written for the following topics:

1) The relationship between the transmission ratio of the transmission and the input displacement of the drive mechanism

![The gear ratio and the input displacement](https://github.com/xijunke/Transmission_drive_mechanism_for_FWMAV/blob/master/pic/The%20gear%20ratio%20and%20the%20input%20displacement.png)

2) Optimal linearity and approximate linearity

![Optimal linearity and approximate linearity](https://github.com/xijunke/Transmission_drive_mechanism_for_FWMAV/blob/master/pic/Optimal%20linearity%20and%20approximate%20linearity.png)

3)The sensitivity analysis of the transmission ratio for the driver mechanism.

![Sensitivity_analysis_transmission_ratio_difference_L_c](https://github.com/xijunke/Transmission_drive_mechanism_for_FWMAV/blob/master/Sensitivity_analysis_transmission_ratio_difference_pic/Sensitivity_analysis_transmission_ratio_difference_L_c.png)

![Sensitivity_analysis_transmission_ratio_difference_L_s1](https://github.com/xijunke/Transmission_drive_mechanism_for_FWMAV/blob/master/Sensitivity_analysis_transmission_ratio_difference_pic/Sensitivity_analysis_transmission_ratio_difference_L_s1.png)

![Sensitivity_analysis_transmission_ratio_difference_L_s2](https://github.com/xijunke/Transmission_drive_mechanism_for_FWMAV/blob/master/Sensitivity_analysis_transmission_ratio_difference_pic/Sensitivity_analysis_transmission_ratio_difference_L_s2.png)

![Sensitivity_analysis_transmission_ratio_difference_L_s3](https://github.com/xijunke/Transmission_drive_mechanism_for_FWMAV/blob/master/Sensitivity_analysis_transmission_ratio_difference_pic/Sensitivity_analysis_transmission_ratio_difference_L_s3.png)



            

          

      

      

    

  

    
      
          
            
  # Chapter IX Summary and Outlook        281
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  # Conceptual-design-and-application-of-insect-bioinspired-FWMAV

by Prof. Weiping Zhang, Dr. Xijun Ke

National Defence Industry Press, 2021

### Bio-insect flapping wing micro aerial vehicle (FWMAV) is a kind of centimeter-scale air-flying robot which imitates the flapping-wing motion pattern of flying insects in order to realize flying ability and agile maneuverability similar to flapping-winged flying insects. Because of its future broad application prospects in the field of military and civilian, at present, the development of bio-insect FWMAV has become a hot research topic of some important scientific research institutions and units at home and abroad.

## The introduction of the main content:

The book is divided into nine chapters. Firstly, the research background and engineering significance, the research situation of the dipteran insect wingbeat model and the domestic and international research status of the insect-inspired flapping wing micro air vehicle (FWMAV) are elaborated, and the important problems faced by engineering design are extracted. Then the modeling theory and numerical method of computational fluid dynamics of insect flapping wing flight are summarized, and the research status of the aeroelastic noise of flapping wing flight is introduced. The sounding mechanism and noise reduction mechanism of different flapping wing species are discussed. An extended quasi-steady aerodynamic and inertial force and moment model was established to solve the problem of wingbeat dynamics and optimal aerodynamic parameters for flapping wing hovering flight with minimum energy consumption. Then, based on the quasi-steady aerodynamic model and the lumped parameterized linear model, the conceptual design framework of the flapping wing hovering flight is established. From the perspective of the development of engineering prototypes, the engineering and technical routes such as the design, manufacture and testing of the insect-inspired FWMAV are systematically expounded. Finally, the main contents of this book are summarized and the future research directions are prospected.
The book is structured in a clear-cut manner, focusing on forward-looking and systematic, highlighting the combination of theoretical issues and engineering applications. It can be used as a senior undergraduate and graduate textbook for micro air vehicle design, aerospace and micro-electromechanical systems, etc., as well as a reference book for aviation engineers and researchers in related fields.
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